АЛЬТЕРНАТИВНЫЕ ИСТОЧНИКИ ЭНЕРГИИ - АИЭ

Энергия солнца

В последнее время интерес к проблеме использования солнечной энергии резко возрос. И хотя этот источник также относится к возобновляемым, внимание, уделяемое ему во всем мире, заставляет нас отдельно рассмотреть возможности использования солнечной энергии.

Потенциальные возможности энергетики, основанной на использовании непосредственно солнечного излучения, чрезвычайно велики.

Заметим, что использование всего лишь 0,0125 % этого количества энергии Солнца могло бы обеспечить все сегодняшние потребности мировой энергетики, а использование 0,5 % - полностью покрыть потребности на перспективу.

К сожалению, вряд ли когда-нибудь эти огромные потенциальные ресурсы удастся реализовать в больших масштабах. Одним из наиболее серьезных препятствий такой реализации является низкая интенсивность солнечного излучения. Даже при наилучших атмосферных условиях (южные широты, чистое небо) плотность потока солнечного излучения составляет не более 250 Вт/м2. Поэтому, чтобы коллекторы солнечного излучения "собирали" за год энергию, необходимую для удовлетворения всех потребностей человечества, нужно разместить их на территории 130000 км2!

Необходимость использовать коллекторы огромных размеров, кроме того, влечет за собой значительные материальные затраты. Простейший коллектор солнечного излучения представляет собой зачерненный металлический (как правило, алюминиевый) лист, внутри которого располагаются трубы с циркулирующей в ней жидкостью. Нагретая за счет солнечной энергии, поглощенной коллектором, жидкость поступает для непосредственного использования. Согласно расчетам, изготовление коллекторов солнечного излучения площадью 1 км2 требует примерно 104 тонн алюминия. Доказанные же на сегодня мировые запасы этого металла оцениваются в 1,17?109 тонн.

Из написанного ясно, что существуют разные факторы, ограничивающие мощность солнечной энергетики. Предположим, что в будущем для изготовления коллекторов станет возможным применять не только алюминий, но и другие материалы. Изменится ли ситуация в этом случае? Будем исходить из того, что на отдельной фазе развития энергетики (после 2100 года) все мировые потребности в энергии будут удовлетворяться за счет солнечной энергии. В рамках этой модели можно оценить, что в этом случае потребуется "собирать" солнечную энергию на площади от 1?106 до 3?106 км2. В то же время общая площадь пахотных земель в мире составляет сегодня 13?106 км2.

Солнечная энергетика относится к наиболее материалоемким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение потребности в материалах, а следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовление гелиостатов, коллекторов, другой аппаратуры, их перевозки. Подсчеты показывают, что для производства 1 МВт?год электрической энергии с помощью солнечной энергетики потребуется затратить от 10 000 до 40 000 человеко-часов. В традиционной энергетике на органическом топливе этот показатель составляет 200-500 человеко-часов.

Пока еще электрическая энергия, рожденная солнечными лучами, обходится намного дороже, чем получаемая традиционными способами. Ученые надеются, что эксперименты, которые они проведут на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы.

Ветровая энергия

Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветры - от легкого ветерка, несущего желанную прохладу в летний зной, до могучих ураганов, приносящих неисчислимый урон и разрушения. Всегда неспокоен воздушный океан, на дне которого мы живем. Ветры, дующие на просторах нашей страны, могли бы легко удовлетворить все ее потребности в электроэнергии! Почему же столь обильный, доступный да и экологически чистый источник энергии так слабо используется? В наши дни двигатели, использующие ветер, покрывают всего одну тысячную мировых потребностей в энергии.

Техника XX века открыла совершенно новые возможности для ветроэнергетики, задача которой стала другой - получение электроэнергии. В начале века Н.Е. Жуковский разработал теорию ветродвигателя, на основе которой могли быть созданы высокопроизводительные установки, способные получать энергию от самого слабого ветерка. Появилось множество проектов ветроагрегатов, несравненно более совершенных, чем старые ветряные мельницы. В новых проектах используются достижения многих отраслей знания.

В наши дни к созданию конструкций ветроколеса - сердца любой ветроэнергетической установки - привлекаются специалисты-самолетостроители, умеющие выбрать наиболее целесообразный профиль лопасти, исследовать его в аэродинамической трубе. Усилиями ученых и инженеров созданы самые разнообразные конструкции современных ветровых установок.

Энергия рек

Многие тысячелетия верно служит человеку энергия, заключенная в текущей воде. Запасы ее на Земле колоссальны. Недаром некоторые ученые считают, что нашу планету правильнее было бы называть не Земля, а Вода, так как около 3/4 поверхности планеты покрыты водой. Огромным аккумулятором энергии служит Мировой океан, поглощающий большую ее часть, поступающую от Солнца. Здесь плещут волны, происходят приливы и отливы, возникают могучие океанские течения. Рождаются могучие реки, несущие огромные массы воды в моря и океаны. Понятно, что человечество в поисках энергии не могло пройти мимо столь гигантских ее запасов. Раньше всего люди научились использовать энергию рек.

Но когда наступил золотой век электричества, произошло возрождение водяного колеса, правда, уже в другом обличье (в виде водяной турбины). Электрические генераторы, производящие энергию, необходимо было вращать, а это вполне успешно могла делать вода, тем более что многовековой опыт у нее уже имелся. Можно считать, что современная гидроэнергетика родилась в 1891 году.

Преимущества гидроэлектростанций очевидны: постоянно возобновляемый самой природой запас энергии, простота эксплуатации, отсутствие загрязнения окружающей среды. Да и опыт постройки и эксплуатации водяных колес мог бы оказать немалую помощь гидроэнергетикам. Однако постройка плотины крупной гидроэлектростанции оказалась задачей куда более сложной, чем постройка небольшой запруды для вращения мельничного колеса. Чтобы привести во вращение мощные гидротурбины, нужно накопить за плотиной огромный запас воды. Для постройки плотины требуется уложить такое количество материалов, что объем гигантских египетских пирамид, по сравнению с ним, покажется ничтожным. Поэтому в начале XX века было построено всего несколько гидроэлектростанций. Вблизи Пятигорска, на Северном Кавказе на горной реке Подкумок успешно действовала довольно крупная электростанция с многозначительным названием "Белый уголь". Это было лишь началом.

Уже в историческом плане ГОЭЛРО предусматривалось строительство крупных гидроэлектростанций. В 1926 году в строй вошла Волховская ГЭС, в следующем - началось строительство знаменитой Днепровской. Дальновидная энергетическая политика, проводящаяся в нашей стране, привела к тому, что у нас, как ни в одной стране мира, развита система мощных гидроэлектрических станций. Ни одно государство не может похвастаться такими энергетическими гигантами, как Волжская, Красноярская и Братская, Саяно-Шушенская ГЭС. Эти станции, дающие буквально океаны энергии, стали центрами, вокруг которых развились мощные промышленные комплексы.Но пока людям служит лишь небольшая часть гидроэнергетического потенциала земли. Ежегодно огромные потоки воды, образовавшиеся от дождей и таяния снегов, стекают в моря неиспользованными. Если бы удалось задержать их с помощью плотин, человечество получило бы дополнительно колоссальное количество энергии.

Энергия Земли

Издавна люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Память человечества хранит предания о катастрофических извержениях вулканов, унесших миллионы человеческих жизней, неузнаваемо изменивших облик многих мест на Земле. Мощность извержения даже сравнительно небольшого вулкана колоссальна, она многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится: нет пока у людей возможностей обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это проявления энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов.

Маленькая европейская страна Исландия ("страна льда" в дословном переводе) полностью обеспечивает себя помидорами, яблоками и даже бананами! Многочисленные исландские теплицы получают энергию от тепла земли, других местных источников энергии в Исландии практически нет. Зато очень богата эта страна горячими источниками и знаменитыми гейзерами - фонтанами горячей воды, с точностью хронометра вырывающейся из-под земли. И хотя не исландцам принадлежит приоритет в использовании тепла подземных источников (еще древние римляне к знаменитым баням - термам Каракаллы - подвели воду из-под земли), жители этой маленькой северной страны эксплуатируют подземную котельную очень интенсивно. Столица город Рейкьявик, в которой проживает половина населения страны, отапливается только за счет подземных источников.

Но не только для отопления черпают люди энергию из глубин земли. Уже давно работают электростанции, использующие горячие подземные источники. Первая такая электростанция, совсем еще маломощная, была построена в 1904 году в небольшом итальянском городке Лардерелло, названном так в честь французского инженера Лардерелли, который еще в 1827 году составил проект использования многочисленных в этом районе горячих источников. Постепенно мощность электростанции росла, в строй вступали все новые агрегаты, использовались новые источники горячей воды, и в наши дни мощность станции достигла уже внушительной величины - 360 тысяч киловатт. В Новой Зеландии существует такая электростанция в районе Вайракеи, ее мощность 160 тысяч киловатт. В 120 км от Сан-Франциско в США производит электроэнергию геотермальная станция мощностью 500 тысяч киловатт.

Чистый воздух, тепло и свет – это альтернативные источники энергии.

Вопросы экологии все сильнее влияют на нашу жизнь. Как известно здоровье человека на 20% зависит от экологии, это больше, чем от уровня развития медицины. Современные наиболее используемые источники электроэнергии это гидро-, тепло- и атомные электростанции. Но они не экологичны. Альтернативная энергетика, построенная на использовании возобновляемых источников энергии, может стать той путеводной звездой, которая выведет Россию из продолжительного социально-экономического кризиса на путь устойчивого развития. Возобновляемые энергоресурсы энергии распределены относительно равномерно, поэтому лидерство в их использовании скорее всего завоюют страны с квалифицированной рабочей силой, восприимчивостью к нововведениям, эффективными финансовыми структурами и стратегическим предвидением.

Уменьшение зависимости энергопотребителей от централизованных энергосетей и энергетических монополистов станет важнейшей особенностью энергетики XXI века. Районы децентрализованного энергоснабжения занимают около 60% территории России и находятся главным образом на севере страны. По мнению специалистов, решить проблемы энергетики северных регионов только за счет крупного энергостроительства невозможно ни в ближайшей, ни в отдаленной перспективе.

В энергетическом балансе Северных районов России свыше 70% мощностей приходится на экологически “грязные”, органические виды топлива — уголь, мазут и дрова, завоз которых весьма дорог. Поэтому все острее становится проблема экологизации северной энергетики, которая должна стать более эффективной в экстремальных условиях Севера. Она должна базироваться на возобновляемых энергоресурсах (ГЭС, геотермальные ТЭС, ветроэлектростанции и т.д.). Огромные пространства редконаселенного Севера в первую очередь нуждаются в децентрализованной автономной системе энергообеспечения, независимой от дорогостоящих поставок органического топлива.

Возможности новых технологий очень широки — достаточно проследить путь, пройденный за два десятилетия компьютерной отраслью (от производства громоздких электронно-вычислительных и допотопных счетно-решающих машин до компактных карманных ноутбуков).

Если XX век можно назвать “нефтяным”, то XXI век реально может стать эрой водородной энергетики. Ученые считают, что открытие дешевого и эффективного способа электролиза воды могло бы превратить водород в господствующий энергоноситель в недалеком будущем. Так, большие перспективы открываются у топливных элементов. Топливные элементы сегодня применяются в легковых автомобилях, автобусах, больницах, на военных базах, предприятиях по переработке промышленных стоков, разрабатываются они и для сотовых телефонов, ноутбуков. Использование малогабаритных топливных элементов и других альтернативных возобновляемых автономных источников энергии позволит децентрализировать энергосистему, сократить расстояние между источником энергии и ее потребителем.

Ветроустановки, как и солнечные электростанции, особенно эффективны в небольших поселениях, для автономных энергопотребителей, отдаленных от централизованных систем энергоснабжения. Для них энергия ветра и Солнца является самым экономичным источником электричества. Характерен в этом отношении пример Дании, разбросанной на многочисленных островах, которые трудно объединить централизованной энергосистемой. Сегодня здесь насчитывается свыше 4 тысяч ветроустановок, на которые приходится около 5% всей вырабатываемой в стране электроэнергии. Заметим, что энергии не только самой экологически чистой, но и дешевой. Если в начале 1990-х гг. 1 кВт ч ее стоил одну шведскую крону, то теперь — в 4 раза дешевле. Это значительно меньше аналогичного показателя для АЭС и угольных ТЭС, и даже конкурентоспособной дешевой шведской гидроэнергии. Датские ветроустановки пользуются большим спросом — свыше половины мирового спроса на них удовлетворяется датскими фирмами и их лицензиатами. Это явилось результатом стратегического предвидения государства, восприимчивого к нововведениям и к стратегическому партнерству с промышленностью, что позволяло Дании занять выгодные позиции в преддверии новой постиндустриальной эры.

Россия обладает колоссальным суммарным потенциалом энергии ветра. Вдоль берегов Северного Ледовитого океана на протяжении 12 тыс. км господствуют ветры со среднегодовой скоростью свыше 5-7 м/с. (Считается, что ветроустановки эффективны при среднегодовых скоростях ветра выше 4-5 м/с.) Суммарная мощность ветра на Севере достигает 45 млрд. кВт, Успешно работают ветроэлектростанции на Новой Земле, в Амдерме, на мысе Уэлен, на островах Врангеля, Шмидта, Командорах (остров Беринга). Ветроустановки успешно заменяют на Севере малые дизельные электростанции, для работы которых необходимо завозить дорогостоящее (иногда импортное) топливо. Только доставка топлива к дизельным электростанциям, расположенным на Севере Канады, обходится вдвое дороже его самого.

Все шире используется на Севере и энергия приливов. В России на северном побережье Кольского полуострова построена Кислогубская приливная электростанция (ПЭС). Опыт эксплуатации этой станции позволил разработать новое проектное решение для строительства ПЭС на Кольском полуострове мощностью до 40 тыс. кВт.

В Тургурском и Пенжинском заливах Охотского моря, в районе Шантарских островов (здесь приливы достигают 13 м), перспективно строительство приливных электростанций мощностью от 7 до 25 млн. кВт.

В Канаде, Швеции, Норвегии, Финляндии, на Аляске все более широкое применение, помимо малых гидроэлектростанций, находят солнечные электростанции. В 2000 г. доля солнечной энергии в энергоснабжении Канадского Севера достигла 5%. Повышение эффективности солнечных элементов и качества материалов позволило за два последних десятилетия снизить на 80% затраты на их сооружение. Сейчас солнечные элементы встраивают в кровельную черепицу, керамические плитки и оконные стекла, что позволяет получать электричество и в отдельных зданиях. Суммарная мощность солнечных батарей возросла в мире со 150 МВт в 1985 г. до 900 МВт к 1999 г.

Опыт работы солнечных электростанций показал, что в условиях длительного полярного дня большую пользу приносит не только пассивное использование солнечной энергии (зеркальные веранды, усиленная теплоизоляция), но и пассивные системы теплоснабжения (солнечные коллекторы с водой или с другим аккумулятором тепла). Не потеряли своего значения и активные системы фотоэлементов, функционирующих также и при облачной погоде.

За прошлое столетие люди научились использовать перегретый пар вулканических областей для получения дешевой геотермальной электроэнергии. Еще в 1970-е годы белорусский академик Герасим Богомолов предлагал использовать тепло подземных вод. Но тогда эту идею "списали", потому что стоимость нефтепродуктов была очень низкой. Стакан бензина стоил дешевле стакана газировки. Теперь отечественные ученые советуют обратить внимание на энергию подземных вод.

Интерес к этому виду энергии резко возрос в последнее время, когда появилась угроза т.н. "энергетического голода". Хотя в последние годы наметилась тенденция к сокращению использования геотермальной энергии. Мощности ГеоТЭС в мире к концу 1990-х гг. сократились более чем вдвое — всего до 3.6 млн. кВт. Причина снижения интереса к геотермальным источникам энергии — трудности в эксплуатации станций, их негативное воздействие на окружающую среду и возрастающая стоимость 1 кВт установленной мощности. К тому же геотермальная энергетика не мобильна, она территориально привязана к источникам, находящимся порой в труднодоступных, малоосвоенных, преимущественно горных районах (за исключением, пожалуй, Исландии). Еще одна сложность использования геотермальных вод – их высокая минерализация. В отдельных местах она достигает 400 граммов на литр. Из-за этого может наступить закупоривание скважин.

Зарубежный опыт показывает, что затраты на строительство геотермальныъ ЭС сначала получаются больше. Однако поскольку эта энергия "дармовая", предлагаемая нам самой природой и к тому же возобновляемая, отопление потом становится дешевле в два раза. Для обеспечения экологической чистоты в технологической схеме ГеоЭС предусмотрены система закачки конденсата и сепарата обратно в земные пласты, а также системы снеготаяния и предотвращения выбросов сероводорода в атмосферу. По мнению российских ученых, большой прогресс по удешевлению и уменьшению эксплуатационных издержек будет достигнут применением в геотермальных турбинах верхнего выхлопа отвода пара.

Тем не менее геотермальные ресурсы перспективны в использование в северных районах России. Геотермальные станции используют энергию горячего пара или воды, получаемых из недр Земли. Этот вид возобновляемой энергии широко используется в мире. Артезианские бассейны термальных вод выявлены в Саяно-Байкальской горной системе, в Бурятии (здесь насчитывается около 400 термальных источников), в Якутии, на севере Западной Сибири, Чукотке (здесь известны 13 высокотермальных источников с суммарным дебитом 166 л/с). Самый “горячий” район — Курило-Камчатский вулканический пояс. На Камчатке выявлено 70 групп термальных источников, 40 из них имеют температуру около 100°С. Только наиболее крупные источники дают столько тепла, сколько можно получить от сжигания 200 тыс. т у.т. Себестоимость получения 4.2 ГДж тепла в системах геотермального теплоснабжения Камчатки в 10 раз ниже, чем в котельных Петропавловска-Камчатского.

18 августа 1966 года здесь была построена Паужетская геотермальная станция мощностью 11 тыс. кВт с тремя агрегатами, которая использует энергию паро-гидротермального месторождения. Энергоустановка создавалась на Подольском турбинном заводе Работает очень надежно. И это не смотря на то, что она находится в районе, где часто происходят землетрясения. Недавно введена в строй Верхне-Мутновская геотермальная станция обеспечивая более четверти потребности области в электроэнергии.. Работой геотермальной станции будут управлять операторы из Москвы посредством спутника. Для этого германская фирма Siemens разработала комплекс. Такая система будет первой по счету в России и третьей – в мире. Мощность Мутновского месторождения оценивается в 300 мегаватт, а общий геотермальный потенциал Камчатки еще значительней. Но пока в конкретных планах рассматривается только расширение ранее введенных геотермальных станций (Паужетская, Верхне-Мутновская). Так, планируется размещение на них новых энергоустановок на основе бинарного цикла – когда горячая термальная вода используется повторно для выработки дополнительной электроэнергии, что, кстати, на Мутновке позволит увеличить мощность станции на 20 мегаватт.

Хотя в наши дни размеры Паужетской геотермальной станции на Камчатке пока еще невелики, возможности таких станций открывают громадные перспективы. За годы своего существования Паужетская геотермальная станция была прибыльной всегда, независимо от величины тарифов. Сегодня этот энергетический узел отпускает энергию по самым низким в области тарифам. И при этом станция остаётся самоокупаемой и самодостаточной. Средний тариф на электроэнергию составляет 1 рубль 40 копеек. Электроотопление для населения стоит 75 копеек за 1 кВт/час. В ближайшие годы планируется создать каскад станций, мощностью до 300 МВт. Интересный факт – в скором будущем на Паужетской геотермальной станции будет установлена турбина, снятая с утилизированной подводной лодки.. Её наработка на подводной лодке составила меньше года. Хоть лодка была в строю несколько лет, но по ходовым часам ресурс турбины использован очень мало. Была проведена серьёзная подготовительная работа: обследование оборудования с привлечением проектировщика с завода-изготовителя, выполнен проект реконструкции этой турбины для геотермального энергоносителя. Центр по утилизации вооружения выполнил подгонку под другие параметры. А надолго ли хватит природного источника энергии для функционирования Паужетки? При работе в нынешнем режиме, по прогнозам специалистов, запасов Паужетского месторождения хватит как минимум лет на 30. Если изыскать средства и провести дополнительную разведку, примерно в двух километрах к югу, то мощность паро-гидротерм составит 30 мегаватт. Возможно, весь этот объём пока и не потребуется, но вполне можно наращивать мощности станции.

Сегодня геотермальную энергию используют в 40 странах мира. В Швейцарии 10 тысяч теплоносителей забирают тепло из-под грунта. Сотни тысяч киловатт дают станции районов Лардерелло в Италии, Вайракей в Новой Зеландии. Треть электроэнергии для Сан-Франциско также дают геотермальные станции. Сегодня мощность канадских ГеоТЭС достигла 0.7 млн. кВт. Поляки начали заниматься геотермальной энергией десять назад. В Польше есть уже четыре геотермальные станции. Одна из них, в курортном Закопане. В Литве вся Клайпеда обеспечивается горячей водой с помощью геотермальной станции.

В Японии с помощью геотермальной энергетики растапливают снег на дороге. Геотермальная энергетика в Японии занимает значительное место – ее доля составляет 21 % . Основным сдерживающим фактором для развития стали экологические движения. Это связанно с тем, что станции расположены в природных парках и дальнейшее их развитие затруднено опасностью нанести ущерб охраняемым и заповедным территориям. Ядерные станции дают 35% общего энергопроизводства, работающие на природном газе – 24%. У нас максимум потребления электроэнергии приходятся на зимние, самые холодные месяцы, а в Японии – на лето, когда из-за жары основное потребление электроэнергии связано с работой оборудования, вырабатывающего холодный воздух.

Но дальше всех в использовании геотермальных ресурсов продвинулась Исландия. Например, столица Исландии Рейкьявик с 1943 года использует геотермальные воды для обогрева домов, учреждений, магазинов и фабрик. Установленная мощность всех исландских геотермальных станций еще в 1988 г. составляла 39 МВт.

За последние 200 лет концентрация ртутных паров в атмосфере повысилась более чем в три раза. Произошло это в результате сжигания городских отходов и некоторых сортов углей, в которых содержится ртуть. Мы заинтересованы в развитии нетрадиционных источников энергетики для уменьшения выбросов вредных веществ в атмосферу.

Ветроустановки влияют на климат

Общеизвестно, что водохранилище ГЭС изменяет климат в прилегающей местности, а ТЭЦ, выбрасывая двуокись углерода, влияет на глобальный климат. Но теперь появились данные о том, что и крупные ветроэлектростанции, состоящие из сотен ветряков, могут оказывать небольшое, но реальное влияние на климат окрестностей.

Высота современных ветродвигателей - до 100 метров, размах лопастей - до 50 метров, и проектируются еще более крупные установки. Компьютерное моделирование, проведенное в университете Дьюка (США), показало, что большие группы ветряков могут увеличить скорость ветра у земли в среднем на 0,6 метра в секунду и повысить температуру воздуха на 0,7 градуса Цельсия. Испарение влаги из почвы при этом увеличится вокруг ветроэлектростанции на 0,3 миллиметра в сутки. Все эти данные усреднены на 24 часа, а ранним утром изменения будут больше: скорость ветра за несколько часов вырастет на 1,5 метра в секунду, а температура - на 2 градуса Цельсия.

Солнечная Россия

Масштабы использования возобновляемых источников энергии (ВИЭ), к которым прежде всего относятся энергия солнца, ветра, биомассы, малых рек, геотермальная энергия, природное и сбросное низкопотенциальное тепло, растут с каждым годом. Сегодня их доля в мировом энергетическом балансе составляет около 8%, а к 2010 г.. по прогнозам специалистов, должна возрасти до 12%.

Технологии использования ВИЭ неуклонно совершенствуются и становятся все более конкурентоспособными и привлекательными. Повышенный интерес к применению экологически чистых ВИЭ во многих странах связан как с ростом цеп на традиционные энергоносители, так и с угрозой антропогенного загрязнения окружающей среды, в том числе энергетическими объектами.

В последние годы внимание к новым источникам энергии резко возросло и в России. Несмотря на то что страна обладает колоссальными запасами нефти, газа и угля, затраты на их добычу и транспортировку неуклонно растут. Большая часть территории с населением около 20 млн. человек не имеет централизованных систем электро- и теплоснабжения. В условиях быстрого роста тарифов (в некоторых регионах России за последние 4 года - в 3-5 раз) многие потребители предпочитают использовать собственные, в том числе нетрадиционные автономные источники энергии. Появляются новые области их эффективного практического применения.

К примеру, на Камчатке нескольких блоков Верхне-Мутновской и Мутновской геотермальных электростанций позволил существенно облегчить положение с энергоснабжением полуострова. Причем следует отметить, что себестоимость электроэнергии ГеоЭС существенно ниже, чем на дизельных электростанциях.

В настоящее время активно развиваются и внедряются технологии энергетической переработки отходов деревоперерабатывающей промышленности на северо-западе России. Создаются ветроэнергетические комплексы па Чукотке, в Калининградской, Ленинградской и других областях страны. Расширяется применение мини-и микро-ГЭС в горных районах Алтая, Башкирии, Бурятии, растет интерес к системам теплоснабжения на базе тепловых насосов.

Широкое применение в России могла бы найти и солнечная энергия. Несмотря на то что в ряде районов страны (прежде всего в Краснодарском крае, Дагестане. Бурятии) в течение ряда лет успешно работают солнечные водонагревательные установки, обеспечивающие горячей водой некоторые санатории, дома отдыха, больницы и жилые дома, в других регионах отношение к ним острожное.

Бытует мнение, что солнечная энергия может эффективно использоваться только в южных странах, а Россия после распада Советского Союза стала считаться северной страной, где солнечного излучения недостаточно и использовать его нецелесообразно.

Последние исследования и разработки специалистов Института высоких температур Российской академии наук (ИВТ РАН) доказывают несостоятельность такой точки зрения.

В Лаборатории возобновляемых источников энергии и энергосбережения ИВТ РАН завершена разработка Атласа распределения ресурсов солнечной энергии по территории России, создана климатическая база данных, ориентированная на исследования в области солнечной энергетики. Наземных станций, па которых проводятся систематические измерения потоков солнечного излучения на территории России, насчитывается всего около ста, что явно недостаточно для районирования всей территории страны. Поэтому в исследованиях были использованы также спутниковые данные NASA, полученные за 10 лет наблюдений за радиационным балансом земной поверхности, в том числе и над территорией России. В результате сотрудниками лаборатории составлены карты поступления солнечной радиации на неподвижные поверхности, ориентированные различным образом в пространстве для всех регионов за определенные периоды года. Для эффективного преобразования энергии Солнца важно выбрать оптимальный угол наклона солнечного коллектора, при котором суммарное поступление энергии солнечного излучения на приемную поверхность за рассматриваемый период работы максимально. Оптимизация угла позволяет в 1,3—1,5 раза увеличить сбор энергии по сравнению с ее поступлением на горизонтальную поверхность.

Эффективность солнечной энергии на территории русского государства, России

Эффективность солнечной энергии на территории русского государства

Построение карт позволило системно оценить потенциал солнечной энергии в различных регионах страны. На изображенной выше карте приведено среднегодовое распределение ресурсов энергии солнечной радиации, поступающей в среднем за день на 1 м площадки южной ориентации с оптимальным углом наклона к горизонту (для каждой географической точки это свой угол, при котором суммарное за год поступление энергии солнечной радиации па единичную площадку максимально). Очевидно, что и сегодняшних границах России наиболее «солнечными» являются не районы Северного Кавказа, как предполагают многие, а регионы Приморья и юга Сибири (от 4,5 до 5.0 кВт-ч/м2 день). Интересно, что Северный Кавказ, включая известные российские черноморские курорты (Сочи и др.), по среднегодовому поступлению солнечной радиации относятся к той же зоне, что и большая часть Сибири, включая Якутию (4,0-4,5 кВт-ч/м день). Более 60% территории России, в том числе и многие северные районы, характеризуются среднегодовым поступлением от 3,5 до 4,5 кВт-ч/м день.

Важным фактором, определяющим экономическую эффективность применения солнечных установок, является продолжительность их использования в течение года. Проблема заключается в том, что для высокоширотных районов различие в поступлении радиации летом и зимой может быть достаточно велико. Так, для территорий, расположенных за Полярным кругом, значительная часть зимнего времени приходится на полярную ночь. В средней полосе России, в том числе и в Москве, поступление энергии солнечного излучения в летний период в пять раз больше, чем в зимний. В этой ситуации возникает вопрос: какие водонагревательные установки наиболее целесообразно предлагать потребителям: сезонные, работающие только в теплый период, или круглый год? Очевидно, что в последнем случае солнечные водонагревательные установки (СВУ) должны иметь большую поверхность солнечных коллекторов для сбора менее интенсивных потоков радиации. Кроме того, в них должен использоваться незамерзающий теплоноситель и, следовательно, дополнительные теплообменники для передачи тепла к воде. Очевидно, что такие агрегаты будут более дорогими и экономически менее привлекательными.

Освоение "солнечного" рынка в России должно начинаться прежде всего с простейших СВУ сезонного действия, которые могут найти эффективное применение не только на юге страны, но практически на всей территории России. С экономической точки зрения они конкурентоспособны там, где их можно замещать электрическими водонагревателями, потребляющими дорогую электрическую энергию. Их также можно использовать на всех объектах с сезонным (летним) потреблением горячей воды (летние кафе, туристические базы, дома отдыха и т.п.). Особо привлекательны установки для большинства россиян, имеющих летние дачи и загородные дома, электроснабжение которых часто ограничено пропускной способностью местных электрических сетей или вовсе отсутствует. Они имеют хорошие перспективы для применения в сельском хозяйстве, местной промышленности, на объектах жилищно-коммунального хозяйства.

Если взглянуть на карту распределения поступления солнечной радиации на поверхность земли по территории России за летний период, то видно, что большинство районов страны вплоть до 65° северной широты характеризуются примерно одинаковыми высокими значениями среднедневной радиации от 4,5 до 5 кВт-ч/м день, и с этой точки зрения энергетическая эффективность СВУ на всей этой территории оказывается приблизительно одинаковой.

Как же обеспечить широкое внедрение солнечных установок на российский рынок? Прежде всего необходимо преодолеть психологический барьер. Нужно более активно информировать потенциальных пользователей о возможностях и особенностях новых предлагаемых технологий. Крайне важно создание в регионах сети Объектов, наглядно демонстрирующих энергетические, экономические и экологические преимущества использования солнечной энергии. Наконец, необходимо предложить рынку новые эффективные и, что особенно важно, менее дорогие установки.

Сотрудниками Лаборатории разработаны современные методы моделирования работы СВУ в реальных климатических условиях, па основе которых определена эффективность их применения в различных регионах России. Показано, например, что в климатических условиях Московского региона с помощью простейшей солнечной водонагревательной установки, имеющей плоский солнечный коллектор площадью 2 кв. м и бак-аккумулятор емкостью 100 л., в период с апреля по сентябрь можно получать теплую воду (т.е. нагретую до температуры выше 37°С) не менее чем в 70% дней этого периода, а при температуре более 45°С - в течение 50% дней без использования какого-либо резервного нагревателя. Даже в условиях г. Салехарда, расположенного на полярном круге, и летнее время установки могут обеспечить теплой водой более 60% дней.

В лаборатории разработаны новые конструкции солнечных коллекторов и СВУ из теплостойких и стойких к ультрафиолету пластмасс, позволяющие снизить их стоимость в 1,5-2 раза по сравнению с водонагревателями из нержавеющей стали, цветных металлов и стекла. Совместно с проектными организациями разрабатываются типовые решения по использованию солнечных установок различными потребителями. Созданы также стенды для теплотехнических испытаний и сертификации солнечных коллекторов и солнечных водонагревателей в соответствии с национальными и международными стандартами.

Большое внимание уделяется созданию демонстрационных объектов в различных регионах страны. Одним из таких полигонов для применения ВИЭ (возобновляемых источников энергии) стала в последние годы Специальная астрофизическая обсерватория Российской академии наук (САО), всемирно известный научный центр, расположенный в гоpаx Западного Кавказа. Теплоснабжение научного поселка САО с населением 800 человек обеспечивается местной котельной на дорогом привозном жидком топливе. Отопление и горячее водоснабжение научных комплексов САО, расположенных за пределами поселка, в связи с недопущением загрязнения атмосферы - электрическое. В рамках демонстрационно